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STUDY QUESTION: Can artificial intelligence (AI) algorithms developed to assist embryologists in evaluating embryo morphokinetics be
enriched with multi-centric clinical data to better predict clinical pregnancy outcome?

SUMMARY ANSWER: Training algorithms on multi-centric clinical data significantly increased AUC compared to algorithms that only
analyzed the time-lapse system (TLS) videos.

WHAT IS KNOWN ALREADY: Several AI-based algorithms have been developed to predict pregnancy, most of them based only on
analysis of the time-lapse recording of embryo development. It remains unclear, however, whether considering numerous clinical features
can improve the predictive performances of time-lapse based embryo evaluation.

STUDY DESIGN, SIZE, DURATION: A dataset of 9986 embryos (95.60% known clinical pregnancy outcome, 32.47% frozen transfers)
from 5226 patients from 14 European fertility centers (in two countries) recorded with three different TLS was used to train and validate
the algorithms. A total of 31 clinical factors were collected. A separate test set (447 videos) was used to compare performances between
embryologists and the algorithm.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Clinical pregnancy (defined as a pregnancy leading to a fetal heartbeat)
outcome was first predicted using a 3D convolutional neural network that analyzed videos of the embryonic development up to 2 or
3 days of development (33% of the database) or up to 5 or 6 days of development (67% of the database). The output video score was
then fed as input alongside clinical features to a gradient boosting algorithm that generated a second score corresponding to the
hybrid model. AUC was computed across 7-fold of the validation dataset for both models. These predictions were compared to those of
13 senior embryologists made on the test dataset.
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MAIN RESULTS AND THE ROLE OF CHANCE: The average AUC of the hybrid model across all 7-fold was significantly higher
than that of the video model (0.727 versus 0.684, respectively, P¼ 0.015; Wilcoxon test). A SHapley Additive exPlanations (SHAP)
analysis of the hybrid model showed that the six first most important features to predict pregnancy were morphokinetics of the embryo (video
score), oocyte age, total gonadotrophin dose intake, number of embryos generated, number of oocytes retrieved, and endometrium thickness.
The hybrid model was shown to be superior to embryologists with respect to different metrics, including the balanced accuracy (P� 0.003;
Wilcoxon test). The likelihood of pregnancy was linearly linked to the hybrid score, with increasing odds ratio (maximum P-value¼ 0.001),
demonstrating the ranking capacity of the model. Training individual hybrid models did not improve predictive performance. A clinic hold-out
experiment was conducted and resulted in AUCs ranging between 0.63 and 0.73. Performance of the hybrid model did not vary between TLS
or between subgroups of embryos transferred at different days of embryonic development. The hybrid model did fare better for patients older
than 35 years (P< 0.001; Mann–Whitney test), and for fresh transfers (P< 0.001; Mann–Whitney test).

LIMITATIONS, REASONS FOR CAUTION: Participant centers were located in two countries, thus limiting the generalization of our
conclusion to wider subpopulations of patients. Not all clinical features were available for all embryos, thus limiting the performances of
the hybrid model in some instances.

WIDER IMPLICATIONS OF THE FINDINGS: Our study suggests that considering clinical data improves pregnancy predictive
performances and that there is no need to retrain algorithms at the clinic level unless they follow strikingly different practices. This study
characterizes a versatile AI algorithm with similar performance on different time-lapse microscopes and on embryos transferred at different
development stages. It can also help with patients of different ages and protocols used but with varying performances, presumably because
the task of predicting fetal heartbeat becomes more or less hard depending on the clinical context. This AI model can be made widely
available and can help embryologists in a wide range of clinical scenarios to standardize their practices.

STUDY FUNDING/COMPETING INTEREST(S): Funding for the study was provided by ImVitro with grant funding received in part
from BPIFrance (Bourse French Tech Emergence (DOS0106572/00), Paris Innovation Amorçage (DOS0132841/00), and Aide au
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are or have been employees of ImVitro and have been granted stock options. X.P.-V. has been paid as a consultant to ImVitro and has
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have no conflicts to declare.
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Introduction
Embryologists routinely use morphokinetic criteria to identify the best
embryo to transfer (Alpha Scientists in Reproductive Medicine and
ESHRE Special Interest Group of Embryology, 2011). The criteria are
based on both morphological traits and the timing of key biological
events that can routinely be recorded with time-lapse incubator sys-
tems (TLS) for a maximum of 7 days of culture. This routine embryo
evaluation can be time-consuming (Veiga et al., 2022) and suffer from
inter and intra-operator variability (Adolfsson and Andershed, 2018).
In addition, while there is an obvious correlation between embryo
quality (as defined by embryologists) and pregnancy success rates, nu-
merous ‘good’ quality embryos will not lead to a pregnancy, and in-
versely, ‘poor’ quality embryos may lead to a clinical pregnancy and
live births (Oron et al., 2014). On the other hand, pre-implantation ge-
netic screening for aneuploidy (PGT-A) is considered a diagnostic tool
of interest to deselect aneuploid embryos, which might lead to implan-
tation failures and miscarriages (Sanders et al., 2021). However, PGT-
A is a costly, time consuming, and invasive procedure and it remains
unclear if it benefits equally all patients (Greco et al., 2020), especially
subgroups of patients who might have less marked aneuploidy rates
such as patients <35 years of age (Demko et al., 2016).

To assist embryologists in evaluating embryos, a growing number of
publications have suggested using artificial intelligence (AI), proposing

different approaches (Zaninovic and Rosenwaks, 2020). Some algo-
rithms focus solely on automating the morphological evaluation (Chen
et al., 2019; Khosravi et al., 2019; Kragh et al., 2019) or the extraction
of morphokinetics events (Dirvanauskas et al., 2019; Feyeux et al.,
2020), thus saving time and decreasing inter-operator variability, but
leaving embryologists to estimate the embryo quality according to com-
mon standards. Other studies use AI to predict the chances an embryo
has to develop to a blastocyst (Wong et al., 2010; Liaoet al., 2021).
Another approach consists of feeding the timing of key biological events
to machine learning algorithms, in the hopes that they can use this infor-
mation to predict the chances of pregnancy or live birth (Zabari et al.,
2022) better than embryologists. In contrast, a more objective approach
consists of training models that either analyze a single image (VerMilyea
et al., 2020) or the entire embryonic development (Tran et al., 2019;
Berntsen et al., 2022; Lassen et al., 2022) using pregnancy outcome as a
label. This leaves more room for the algorithms to focus on any part of
the embryonic development, without biasing them into analyzing solely
the information that embryologists focus on (Coticchio et al., 2022).
However, analyzing only one final image can only help embryologists
that choose to transfer embryos at the blastocyst stage, and seemingly
ignores the important and time-consuming task of analyzing the kinetics
of the embryo (Meseguer et al., 2011; Veiga et al., 2022).

While additional groups have described deep learning algorithms
trained on videos of developing embryos (Sawada et al., 2021; Yang
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et al., 2022), none seem to have combined them with multiple varia-
bles describing the characteristics of the patient or the cycle. This is
necessary to adjust the chances an embryo has to lead to a pregnancy,
in the context, for example, of endometrial receptivity as it is known
the interactions between the embryo and the endometrium play an
important role in embryo implantation (Lessey and Young, 2019).
Erlich et al. (2021) only used the age of the egg donor or mother,
while Enatsu et al. (2022) analyzed 12 clinical features (including age,
anti-Müllerian hormone (AMH), endometrial thickness) but in combi-
nation with single images of the blastocyst. The aim of this study was
to test whether analyzing a large subset of clinical features improved
the performances of a deep learning algorithm that predicts the likeli-
hood of pregnancy of an embryo based on its kinetics. To the best of
our knowledge, this is the first algorithm that personalizes the evalua-
tion of embryo kinetics with a set of 31 clinical features, across differ-
ent time-lapse incubators and on embryos transferred at different
stages of development. Our aim is to provide IVF practitioners with a
complementary automated solution that helps them predict which em-
bryo can lead to a clinical pregnancy.

Materials and methods

Data collection
This study was performed on data from 14 clinics in France and Spain,
corresponding to IVF cycles completed between the year 2016 and 2022.

The data, consisting of videos of embryos and 31 clinical variables
describing the patients (or donors when relevant) and their IVF treat-
ment, was collected after removing any direct identifiers of the patient.
This medical information consisted of clinical variables such as age,
BMI, hormonal levels, and type of stimulation, which are all detailed in
Supplementary Table SI. The videos were recorded using one of the
following TLS: EmbryoscopeVR or EmbryoscopeþVR (Vitrolife, Västra
Frölunda, 421000, Sweden), GERIVR (Genea BiomedX, Sydney NSW
2000, Australia), or MIRIVR (ESCO Medical, Egâ, 8250 Denmark).

Data from a total of 55 077 embryos was collected, but only 9986
embryos (Table I) were used to train the algorithms (including 9537
embryos with known pregnancy data) and 447 for testing (all having
known pregnancy data, Table II). Only 192 embryos used in training
(<2% of known pregnancy data) had been biopsied for PGT-A testing,
and <3% corresponded to oocyte donations.

Each embryo and thus, video, was linked to: its transfer decision (dis-
carded, frozen, transferred fresh, or transferred frozen); its clinical preg-
nancy outcome; and the clinical features of the cycle related to the
patient (or donor when relevant, Supplementary Table SI). Clinical preg-
nancies were categorized into a positive (FHþ) or a negative (FH�) clin-
ical pregnancy, using the detection of a fetal heartbeat (FH) via
ultrasound (6–8 weeks after transfer) as a measure of clinical pregnancy.

Retrospective clinical trial
To compare the AI model performances to that of experts, 13 senior
embryologists from nine different IVF centers were asked to analyze
retrospective data through an annotation platform available online.
Each one analyzed a subset of �130 videos randomly selected from
the 447 videos present in the test set (Table II and Supplementary

Fig. S1). Some videos were seen by more than one expert. Each
embryologist’s performance was compared to that of the model based
only on the subset of embryos they had seen.

Embryologists were asked to predict the clinical pregnancy outcome of
the embryo as positive or negative, with and without the contextualizing
clinical data. They also had to grade the embryo quality: poor, fair, or
good, according to morphokinetic criteria (Alpha Scientists in
Reproductive Medicine and ESHRE Special Interest Group of
Embryology, 2011). Note that the embryo quality grading was voluntarily
generic so as to encompass practices from different countries. Future
studies will benchmark the algorithm with other grading systems (e.g.
Gardner, ASEBIR (Ardoy et al., 2008; Gardner and Schoolcraft, 1999), or
with respect to morphological traits at the blastulation stage). The test
set was not a random sampling of the embryos with known pregnancy
data as it needed to contain a stable amount of data coming from each

.......................................................................................................

Table I Description of the complete training and validation
database.

Training and validation database (9986 human embryos)

Transfer decision (number of embryos (%))1*

Discarded with extremely poor quality 449 (4%)

Transfers with known FH outcome 9537 (96%)

Time-lapse system

MIRIVR 39%

GERIVR 32%

EMBR–EMBRþVR 29%

IVF technique

Conventional IVF 23%

ICSI 63%

Not reported 14%

Transfer day

Day 2 15%

Day 3 18%

Day 4 19%

Day 5 39%

Day 6 9%

Type of transfer

Fresh 58%

Frozen 34%

Not reported 8%

Main clinical features (total 31)

Oocyte age [years], mean § SD (min–max) 35§ 5
(19–54)

Woman BMI [kg/m2], mean § SD (min–max) 23.4§ 4.3
(14–45)

AMH [ng/ml], mean § SD (min–max) 2.95§ 2.62
(0.01–29)

FSH [IU/l], mean § SD (min–max) 7.29§ 3.13
(0.4–67.0)

*Extremely poor embryos are described in ‘Data preparation’.
1Transfers with known outcome correspond to single transfers or double transfers
where the outcome applies to both embryos (i.e. two FHþ or no FHþ at all).
FH: fetal heartbeat, AMH: anti-Müllerian hormone.
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TLS (Table II). No embryo coming from the same egg retrieval could be
found both in the test set and the training or validation set.

Data preparation
Given that data came from different clinics, countries, and TLS, a nor-
malization pipeline was developed to homogenize both the videos and
the clinical data. The goal of this pipeline was primarily to facilitate the
learning process and to avoid biases. The normalization pipeline of vid-
eos consisted of the following steps: temporal normalization, embryo
cropping, resizing, removal of the final empty frames as well as lumi-
nosity correction.

Videos that covered <24 h of embryonic development were re-
moved (�5% of the training and validation database). All videos were
uniformly sub-sampled to the maximum acquisition rate (i.e. 20 min).
Each frame of the video was cropped over time to a 256 � 256 image
centered around the embryo using YOLO (Redmon et al., 2015) to
minimize exposure to artifactual information outside of the embryo.
The YOLO model was evaluated on a validation set of 300 frames
and reached a precision and recall of 0.961 and 0.992, respectively.

While the vast majority of the validation and training data corre-
sponded to known pregnancy data, an exception was made for a small
portion of discarded embryos curated by a senior embryologist: these
extremely poor quality embryos were identified as never being able to
lead to a pregnancy (e.g. immature eggs, stopped in their development
at any cleaved stage; Supplementary Fig. S2). They only represented
4.5% of the validation and training dataset, and were never taken into
account in the performances reported in this paper, other than in the
discussion to estimate how easy it would be to automatically identify
these embryos. Indeed, the focus of this study was to train a model
only on transferred embryos, to not reproduce the potential bias of
the embryologist. The risk would be that the AI always discards poor
embryos that could have led to a pregnancy (Oron et al., 2014;
Kirillova et al., 2020). Therefore, no assumptions were made about
the outcome of the vast majority of discarded embryos.

Training of the deep learning and machine
learning models
To predict the pregnancy outcome of the embryo, a deep learning
model (3D ConvNet network with a ResNet backbone (He et al.,
2015)) was built using PyTorch (Paszke et al., 2019). This architecture
was proven to be very effective for video-classification tasks (Tran
et al., 2014). Using a depth of 50 layers, the model is made of 27.2 M
parameters that are optimized through a training loop. The final output
is a score ranging between 0 and 1 and is evaluated using a binary
cross entropy loss. Prior to training, videos are resized to 128�128 to
speed up the learning.

To deal with the limited GPU memory, 64 frames are uniformly
sampled across the video using a stride of three frames. The develop-
mental time of the embryo between two frames corresponded to 2 h.
If the video spanned <128 h, it was padded with black images up to
the 64th frame. Gaussian blur was applied during training, as well as
Gaussian noise and color jittering (contrast, brightness, saturation).
Finally, the images were rotated at a random angle, cropped randomly
to 87% of the field of view and flipped horizontally.

The training and validation dataset was split into seven cross-
validation folds to ensure a ratio of �85%/15% between training and
validation. No embryo from the same egg retrieval could be found
both in the validation and the training subset. Each training fold was
used to train a model and metrics were computed on each validation
set. The model was trained during 86 722 mini-batches, corresponding
to 50 epochs, using a batch size of 9 on 4 T T4 GPUs. The initial
learning rate was set at 0.05 and is decreased by 1e�1 first at Epoch
5 and a second time at Epoch 15. This schedule and base learning rate
were found to yield the most stable learning curve and the highest vali-
dation performance. To control overfitting, a dropout rate of 0.5 was
used. This hyper-parameter controls the ratio of neurons in the net-
work that will be ignored during training and is used to reduce overfit-
ting. Transfer learning was used as a warm-start, using a set of weights
originally pre-trained on the dataset Kinetics (Kay et al., 2017). The fi-
nal fully connected layer was replaced to match the number of classes
in our dataset (N¼ 1).

Clinical features were pre-processed and fed along with the video
score provided by the 3D ConvNet model to a gradient boosted deci-
sion tree algorithm (XGBoost), designated as the hybrid model.
Hyperparameters were automatically adjusted in order to maximize

.......................................................................................................

Table II Test set description.

Test set (447 human embryos)

Time-lapse system

EMBR–EMBRþVR 36%

GERIVR 32%

MIRIVR 32%

IVF method*

Conventional IVF 26%

ICSI 72%

Unknown 2%

Frozen transfers 45%

Transfer day

Day 2 20%

Day 3 24%

Day 5 37%

Day 6 20%

Embryo quality

Poor 23%

Fair 41%

Good 36%

Main clinical features

Oocyte age [years], mean § SD (min–max) 35§ 5
(20–43)

BMI1 woman [kg/m2], mean § SD (min–max) 23.2§ 4.5
(15–42)

AMH2 [ng/ml], mean § SD (min–max) 3.04§ 3.08
(0.33–22)

FSH3 [IU/l], mean § SD (min–max) 7.1§ 1.9
(1–16.7)

*IVF method is not always reported in the data explaining the presence of unknown
data.
AMH: anti-Müllerian hormone.
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F1-score from the validation sets. The hybrid model was trained on
the same 7-fold stratified cross-validation, and provided a score, rang-
ing from 0 to 1. All performances reported on the test set correspond
to models (hybrid or video) retrained on the entire training and valida-
tion database to leverage all the data available.

Hybrid models were trained on the same seven splits described be-
fore, either on each clinics’ data (i.e. customized) or on data from all
clinics (i.e. generic). Performances were compared between the cus-
tomized and generic model on data for each clinic.

To identify the importance of clinical features on the final score, an
SHAP explainer model was fitted on the test set, using all the available
clinical features, including the video score obtained thanks to the 3D
convolutional neural network (Lundberg et al., 2020). This value is
computed using a framework based on co-operative game theory and
assesses the impact of each feature in context with every other feature
available. SHAP values were computed for each feature and averaged
across all embryos from the test set.

A clinic hold-out validation study was carried out to investigate the gen-
eralizability of the hybrid model as suggested by Kragh and Karstoft
(2021), similarly to Berntsen et al. (2022). The hybrid model was trained
on all clinics but one, and then evaluated on the data from the clinic that
was left out. The top 10 features according to the SHAP analysis were
computed for each fold, alongside the average percentage of missing val-
ues for those features of the evaluated clinic. Clinics with less than 250
embryos with known pregnancy data and <50% of data within the top
10 clinical features were excluded from this analysis.

Model performances
The performance of the models was first assessed using the receiver
operating characteristic (ROC) curve generated by plotting the true
positive rate (sensitivity) against the false positive rate (1�specificity)
across all possible thresholding values between 0 and 1. The higher
the AUC, the more favorable the trade-off between sensitivity and
specificity. Balanced accuracy, sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV) were calculated by
selecting a specific threshold, following the F1 score maximization as a
measure of the best compromise between sensitivity (recall) and PPV
(precision). The Matthew correlation coefficient (MCC) was also com-
puted, which is a measure of the differences between the predicted
and the actual values. A value of 1 indicates perfect agreement, while
a value of 0 indicates a random prediction. The optimal threshold for
F1-score was found on the concatenation of all validation sets. Unless
specified, performances were averaged across all validation sets. They
were reported on the test set only when comparing the algorithm to
embryologists in the retrospective trial.

The video score was binned in four separate categories to test
whether there was a correlation between scores and pregnancy rates,
and whether different groups of embryos could be distinguished as a
function of their likelihood to lead to a pregnancy. Negative predic-
tions were binned into Not Recommended (0–0.14) and Not Favorable
(0.15–0.48) categories, and positive predictions into Favorable (0.49–
0.68) and Recommended (0.69–1).

Statistical analysis
The Wilcoxon test was used to assess statistically significant differences for
quantitative data. A Spearman’s rank correlation was calculated to assess

the relation between the video score and the grade of the embryo. A lo-
gistic regression was fitted between the pregnancy outcome and the bins
of hybrid score and was used to compute the odds ratios (OR). Mann–
Whitney U test was used to compare AUCs between different groups. A
Bonferroni correction was used for comparisons across more than two
groups. All statistical comparisons were two sided and a significance thresh-
old of 5% for the P-value was used. Averages are shown either with their
SD or their interval of confidence (95% CI). The Python package SciPy
(v.1.8.1) was used to conduct all statistical tests (Virtanen et al., 2020).

Results

The video score correlates with embryo
quality
Figure 1 shows the distribution of video scores for each embryo’s grade.
Out of the 447 embryos from the test set, N¼ 102 were labeled as
poor, N¼ 184 as fair quality, and N¼ 161 as good quality by the embry-
ologist’s majority vote (see Materials and methods). Average scores for
poor quality embryos tended to be lower (0.23§ 0.20), whereas good
embryos corresponded to much higher scores (0.50§ 0.22). The corre-
lation between the video score and embryo quality was statistically signifi-
cant (Spearman’s test, rho¼ 0.45, P-value <0.001).

Analyzing clinical features in addition to
embryo development improves
performances
The results of the 3D-ResNet model trained only with videos were
compared to the hybrid model that analyzed both the output of the
3D-ResNet and the clinical features (Fig. 2A). The hybrid model out-
performed the 3D ResNet model, with a statistically significant relative
increase of 6.27% in AUC (P¼ 0.0011; Wilcoxon test). Analyzing both
the videos and the clinical features yielded an average AUC of
0.727§ 0.012 versus 0.684§ 0.016 when only visual information was
taken into account (Fig. 2B). Performances measured on each fold can
be found in Supplementary Table SII.

Figure 3A shows the relative contribution of the top 10 features to
the final hybrid score, as identified by XGBoost. The larger the SHAP
value is, the larger the impact a given feature on the final score. The
results showed that the video score, which is the output score of the
3D-ResNet and reflects the morphokinetics of the embryo, was the
most important feature, with a mean absolute contribution of
0.57§ 0.40. Oocyte age was the second most important feature with
a mean absolute SHAP value of 0.32§ 0.36. The 22 clinical features
present in our database (Supplementary Table SI) and not shown in
Fig. 3 accounted for 0.42§ 0.01 of the SHAP contribution, with none
of the individual features displaying a value higher than 0.037.

The hybrid score correlates with pregnancy
rate
In order to test whether the scores of the hybrid model increased
with the likelihood of pregnancy, they were binned into four catego-
ries. Figure 3B shows the ratio of successful pregnancy for each group
of scores. The increasing ORs between the first category and the rest
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indicates a linear relationship between the score and the likelihood of
pregnancy. This suggests the ability of the model to rank embryos to a
certain degree according to their potential to lead to a pregnancy. It is
important to always keep in mind the imbalance of the dataset as a
measure of what a random prediction would result in. In this case, a
random model would result in a 27% pregnancy rate across all bins.

The hybrid algorithm generalizes to
different clinical contexts but fares better
in cases of fresh transfers and in women
aged 35 years or more
There was no statistical difference between time-lapse microscopes
(P> 0.046, Bonferroni correction), or in terms of day of transfer
(P¼ 0.71; Table III). Performances across different clinical scenarios
were computed (Table IV), showing a statistically significant difference
(P-value <0.001) between the fresh and frozen transfer groups in
terms of AUC (0.76§ 0.02 versus 0.67§ 0.01, respectively).
Performances were higher (P-value <0.001) for women aged 35 years
or more (AUC 0.74§ 0.02) compared to women younger than 35
(AUC 0.68§ 0.01).

The resulting AUCs for each clinic of the hold-out clinic experi-
ments, with the 95% CI, are shown in Table V. Only centers that had
at least 50% of the top 10 features associated with their videos are
shown.

Supplementary Table SIII shows that personalizing the hybrid model
to each clinic’s data did not significantly improve performances (P-value
>0.303; DeLong test) for any of the clinics participating in this study,

suggesting clinics would not benefit from an algorithm trained specifi-
cally on their data.

Performances were also evaluated against a diverse panel of embry-
ologists (N¼ 13) on the test set based on the threshold optimized on
the validation set (t¼ 0.49).

The performances obtained showed that the hybrid model was sig-
nificantly better than the embryologists in terms of specificity
(0.73§ 0.05 versus 0.56§ 0.10, P-value <0.001) and PPV
(0.40§ 0.08 versus 0.34§ 0.07, P-value¼ 0.001), but also significantly
lower in terms of sensitivity (0.50§ 0.06 versus 0.59§ 0.07, P-val-
ue¼ 0.008). NPV of the hybrid model was slightly above that of the
embryologist (0.80§ 0.02 versus 0.79§ 0.03, P-value¼ 0.63), with no
statistical difference found. Using the MCC, the hybrid model was
again significantly higher than the embryologists (0.21§ 0.08 versus
0.14§ 0.10, P-value¼ 0.021), and also with respect to the balanced
accuracy (0.61§ 0.04 versus 0.58§ 0.05, P-value¼ 0.03), two metrics
known to be independent of the imbalance of the predicted class
(Fig. 4). Individual performances per embryologist are shown in
Supplementary Table SIV.

Discussion
To the best of our knowledge, this is the first study to predict the like-
lihood of fetal heartbeat pregnancy of embryos recorded with different
TLS, transferred at different times in the development of the embryos,
and using a large panel of clinical features that also describe the patient
and their IVF treatment. This study paves the way for a more holistic
and personalized approach to predicting fetal heart rate pregnancy.

Figure 1. Boxplots of the video scores according to embryo grade computed on the test set. Each dot corresponds to one
human embryo. Out of the 447 embryos from the test set, n¼ 102 were labeled as poor, n¼ 184 as fair quality, and n¼ 161 as good quality by the
embryologist’s majority vote.
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..The results of this study show that taking clinical parameters into ac-
count significantly increased the AUC by 6% (Fig. 2B), similarly to
Enatsu et al. (2022) who showed an increase of 4.5%. Their study
was, however, applied to static images and was limited to the use of
12 clinical features, in contrast with the 31 types of variables present
in the database of this study. Interestingly, their SHAP analysis also

identified the age of the oocyte as the second most important feature
after the blastocyst image, equivalent to the video score in this study.
They also show AMH as another key predictive feature of pregnancy
outcome, which was not ranked as high in our hands. AMH has been
suggested as an indicator of ovarian reserve (Iwase et al., 2016); per-
haps it was not prioritized as much by this model because the number

Figure 2. Results of the 3D-ResNet model trained only with videos were compared to the hybrid model that analyzed both the
output of the 3D-ResNet and the clinical features. (A) Architecture of the two models. (B) AUC of the video model and hybrid model aver-
aged on the 7-fold. TLS: time-lapse system, AMH: anti-Müllerian hormone, XGBoost: a gradient boosted decision tree algorithm designated as the
hybrid model.
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.
of oocytes retrieved was also available and used as another measure
of the ovarian reserve (Yih et al., 2005). The percentage of videos that
had each of the corresponding clinical features is shown in Fig. 3A.
Results suggest that a feature’s importance is not only correlated with
its presence in the test set. Based on the top 10 predictive biomarkers
of this study, it seems as if the model prioritized a combination of fea-
tures concerning: sperm (male BMI and semen concentration); oocyte
quality (oocyte age, AMH, and gonadotrophin dosage); and the
patient’s receptivity (endometrium thickness), which have previously
been reported in some studies to be linked to IVF outcomes
(Stadtmauer et al., 1994; Gleicher et al., 2016; Mushtaq et al., 2018;
Cimadomo et al., 2018; Craciunas et al., 2019). Future experiments
are needed to discriminate between different types and starting doses

of gonadotrophins, which could affect clinical pregnancy outcome in
different ways. Interestingly, the length of gonadotrophin exposure
seemed to have minimal impact on the pregnancy outcome prediction
(SHAP value¼ 0.0078§ 0.0114), in agreement with other studies
(Martin et al., 2006).

While it is not possible to directly compare performances with
other publications that have used a different dataset to evaluate their
performances, the AUCs of both video and hybrid models from this
study are comparable to that of other groups that have trained their
algorithms to predict the fetal heartbeat. For example, Lassen et al.
(2022) and Erlich et al. (2022) have reported AUCs ranging from
0.621 to 0.708 on Day 5. The original study of Tran et al. (2019)
reported an extremely high AUC of 0.93, but only because they

Figure 3. Relative contribution of the top 10 features to the final hybrid score, as identified by a gradient boosted decision tree
algorithm, XGBoost. (A) The percentage of videos that had each of the corresponding clinical features is shown. Ranking of the top 10 features
by mean SHAP values computed on the test set, i.e. their synergistic contribution to the final score. The larger the SHAP value is, the larger the im-
pact a given feature on the final score. (B) Percentage of successful clinical pregnancy for each range of hybrid scores on the test set. The dashed hor-
izontal line indicates the prevalence of the fetal heartbeat (FH) label in the dataset. A logistic regression was fitted between the variable FH and each
category of scores. The corresponding odds ratios with their P-values are shown for each category compared to the first bin. SHAP: SHapley
Additive exPlanations, an explainer model, OR: odds ratio, AMH: anti-Müllerian hormone.
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trained and validated their algorithms on a disproportionate number of
discarded embryos; this has been acknowledged as being an easier
task that facilitates higher AUCs (Chavez-Badiola et al., 2020; Kan-Tor

et al., 2020; Tran et al., 2019, 2020a, 2020b). When the same group
looked only at known implantation data, the AUC dropped from 0.94
to 0.708 (Lassen et al., 2022). We have therefore trained and evalu-
ated separately our algorithms on a small subset of discarded embryos
that were unquestionably never leading to a pregnancy and also
obtained extremely high performances to recognize them, with an ac-
curacy of 94% using the hybrid model. This can become important to
one day use AI to automate the entire process of embryo evaluation.

It is, however, possible to benchmark the performance of the hybrid
model with embryologists by comparing their predictions on a com-
mon dataset. The results demonstrate a clinical superiority based here
on a higher specificity (Fig. 4), suggesting the model is more often right
in de-selecting embryos that cannot lead to a pregnancy. Here the
threshold was chosen following the F1-score maximization; the thresh-
old could have been optimized differently to prioritize other metrics.
Choosing a threshold is all about striking a compromise, and it could
therefore be tailored at the clinic-level if a center prefers to optimize
the ability to better select embryos that can lead to a pregnancy, at
the risk of having a lower specificity. Ongoing studies are evaluating
the abilities of this same model to better select ‘poor’ embryos that
could lead to a pregnancy, which could be an interesting application
for embryologists who might be less used to transferring them.

Much like these existing algorithms, our algorithms are inherently bi-
ased because they were not trained on the many embryos that were
never transferred, because they lack pregnancy data. However, the
database was longitudinal enough that 46% of the embryos used in
training correspond to embryos transferred after a first failed transfer.
This ensures that the algorithm has not only seen the embryos that
embryologists tend to transfer first, and thereby engrains some crucial
diversity in the type of embryo the model is used to evaluate.

Thanks to the diversity of the database, it was possible to demon-
strate the versatility of the described algorithm. No significant differ-
ence in performances across time-lapse microscopes was observed.
The clinic hold-out study shown in Table V demonstrated that, for a
clinic that was never seen before during training, the AUC of the hy-
brid model could range from 0.63 to 0.72. Lower performances were
observed for clinics that did not have as much associated clinical data.
Notably, the only Spanish center eligible for this hold-out experiment
showed the lowest AUC. This probably is because practices are
known to differ between France and Spain (e.g. more or less oocyte
donors or PGT-A testing). Therefore, excluding even more Spanish
data from training (which represented 11% of the validation and train-
ing database) could explain the lower performance. This emphasizes
the need to maintain a diverse database representative of different
practices over time. In addition, results in Supplementary Table SIV
show that none of the participating centers would have benefited from
having a hybrid model trained solely on their data. It was also ob-
served that the predictive capabilities of the video model were not sig-
nificantly lower for embryos transferred earlier in embryonic
development, suggesting this algorithm can also benefit clinics that
choose to transfer embryos earlier in development. This suggests that
these algorithms might be identifying key early events, in line with
other publications (Coticchio et al., 2022), which have highlighted early
embryonic events as being predictive of implantation rate. Ongoing
work from our group is looking into explainability models that could
help us better understand what events are driving the deep learning al-
gorithm. Just like Berntsen et al. (2022) and Lessen et al. (2022), this

.......................................................................................................

Table III Performances of the video model in different
subgroups.

Group Number of known
pregnancy data

AUC 95% CI

Transfer day

Day 2–Day 3 3166 0.66 0.61–0.71

Day 5–Day 6 6371 0.65 0.64–0.67

Time-lapse system

MIRIVR 3369 0.69 0.66–0.72

GERIVR 2738 0.65 0.64–0.67

EMBR/EMBRþVR 3130 0.7 0.65–0.74

Values are computed over seven cross-validation splits.

.......................................................................................................

Table IV Performances of the hybrid model across differ-
ent clinical scenarios.

Group Number of known
pregnancy data

AUC 95% CI

Transfer type

Frozen 3217 0.67* 0.66–0.68

Fresh 6320 0.76 0.74–0.78

Oocyte age [years]

Women < 35 years 3824 0.68* 0.66–0.69

Women � 35 years 4619 0.74 0.72–0.76

Fertilization method

Conventional IVF 2112 0.72 0.69–0.76

ICSI 5977 0.73 0.71–0.74

The asterisks show statistical differences between subgroups (Mann–Whitney U test).
Values are computed over seven cross-validation splits.

.......................................................................................................

Table V Clinic hold-out AUC results and 95% CI.

Clinic* Number
of KID

embryos

% Missing
top 10 clinical

features**

%
FH1

AUC
Hybrid
Model

95% CI

1 326 38% 29% 0.63 0.57–0.69

2 1247 32% 16% 0.7 0.67–0.73

3 1671 12% 25% 0.68 0.66–0.71

4 2981 9% 19% 0.72 0.7–0.73

5 620 7% 23% 0.7 0.65–0.74

6 694 1% 17% 0.69 0.65–0.72

KID: known implantation. FH1: positive fetal heartbeat.
Each row shows data pertaining to the clinic that was left out from training.
*ID of the clinic excluded from training.
**Data available from the 10 most important clinical features described in Fig. 3.
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.model can better predict the likelihood of pregnancy for fresh trans-
fers. This might have been due to the fact that the clinical features
used were measured at the time of egg retrieval, without taking into
account some variables that might have changed at the time of frozen
transfers (e.g. endometrium thickness). However, training a model
only on data from frozen embryos did not improve performances sig-
nificantly either. It is to be noted that a very small portion of the data
corresponded to oocyte donations; in those cases, the age of the do-
nor was taken into account to reflect oocyte and thus embryo quality.
Future studies will combine both clinical variables from the donor and
the patient to also account for their impact on the patient’s receptivity.
There was a decrease in AUC for younger patients, as found by Erlich
et al. (2022). They hypothesized that it could be due to this sub-group
having more infertility due to non-embryonic causes, thus resulting in
noisy labels where a high potential embryo does not lead as often to a
successful pregnancy. Noisy labels are often an issue for a deep
learning model as it can damage its final accuracy. There are machine
learning techniques (Song et al., 2022) that can mitigate the effect
of such noisy labels, which will also be the focus of future
investigations.

The task of embryologists is first and foremost to rank embryos and
to transfer the one(s) deemed to have the highest chance of leading
to a pregnancy. Results in Fig. 3 show that in fact the hybrid score has
ranking abilities that can help the embryologists bin embryos into dif-
ferent likelihoods of pregnancy. Future studies will have to evaluate
the ranking abilities in the context of cohorts of embryos to under-
stand their impact on the cumulative pregnancy rate and time to preg-
nancy (Diakiw et al., 2022). In addition, the described hybrid score

adjusts the chances an embryo has to lead to a pregnancy in context
with the patient and treatment characteristics, which can be difficult
for embryologists as it encompasses many variables. This can help with
better treatment expectations and management, including better tim-
ing of transfer, especially if variables concerning the endometrium at
transfer are evaluated. This could also help identify the clinical drivers
of this success, which can be helpful in case any of them are actionable
for future transfers or other patients with similar characteristics. At
any rate, additional types of clinical features will be collected to keep
improving predictive performances, while acknowledging that a ceiling
in performances will be reached given that the likelihood of pregnancy
does depend to some extent on factors that are currently not cap-
tured by any available data (e.g. impact of the embryo transfer
procedure).

Supplementary data
Supplementary data are available at Human Reproduction online.

Data availability
The embryo videos and other patient data collected in this study are
not publicly available owing to reasonable ethics and privacy concerns,
and are not redistributable. For any interested collaborators, please
contact the corresponding author. The AI model developed in this ar-
ticle is available for commercial use as part of ImVitro’s software. The
computer code developed is not publicly available owing to commer-
cial restrictions.

Figure 4. Metrics of the 13 embryologists versus hybrid model using the threshold optimized on the validation set. Asterisks de-
note statistically significant differences. The Wilcoxon test was used to compute the P-values. MCC: Matthew correlation coefficient.
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